ΚΡΙΤΗΡΙΑ ΔΙΑΙΡΕΤΟΤΗΤΑΣ
Κριτήριο διαιρετότητας με το 2
Ένας αριθμός διαιρείται με το 2 αν το τελευταίο ψηφίο είναι άρτιος αριθμός (0,2,4,6,8) π.χ 2/2850
Κριτήριο διαιρετότητας με το 3
Ένας αριθμός διαιρείται με το 3 αν το άθροισμα των ψηφίων του διαιρείται με το 3. π.χ 3/75 (7+5=12, το 3 διαιρεί το 12 και άρα το 75 θα διαιρείται με το 3)
Κριτήριο διαιρετότητας με το 4
Ένας αριθμός διαιρείται με το 4 αν ο αριθμός που σχηματίζεται από τα δύο τελευταία ψηφία του διαιρείται με το 4 π.χ 4/95228(28:4=7, αρα το 95228 διαιρείται με το 4)
Κριτήριο διαιρετότητας με το 5
Ένας αριθμός διαιρείται με το 5 αν το τελευταίο ψηφίο είναι 0 ή 5.
π.χ 5/63715
Κριτήριο διαιρετότητας με το 6
Ένας αριθμός διαιρείται με το 6 αν διαιρείται με το 2 και με το 3. π.χ 6/90 (90:2=45 και 90:3=30, αρα το 90 διαιρείται με το 6)
Κριτήριο διαιρετότητας με το 7
Για να εξετάσουμε αν ένας φυσικός αριθμός είναι πολλαπλάσιο του 7 αρκεί να διαγράψουμε το τελευταίο ψηφίο του και να αφαιρέσουμε από τον αριθμό το διπλάσιο του ψηφίου που διαγράψαμε. Ο αριθμός που προκύπτει είναι πολλαπλάσιο του 7 αν και μόνο αν ο αρχικός αριθμός είναι πολλαπλάσιο του 7. Συνεχίζουμε την διαδικασία μέχρι να καταλήξουμε σε διψήφιο αριθμό όπου από την προπαίδεια θα γνωρίζουμε αν είναι ή όχι πολλαπλάσιο του 7 .
π.χ
Επιλέγουμε τυχαία ένα αριθμό 412734.
Διαγράφουμε το τελευταίο ψηφίο του 412734 και αφαιρούμε το διπλάσιο του τελευταίου ψηφίου του : 41273-(2x4)= 41273-8= 41265
Επαναλαμβάνουμε:
- Διαγράφουμε το τελευταίο ψηφίο του 41265 και αφαιρούμε το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του : 4126-(2x5)= 4126-10=4116.
- Διαγράφουμε το τελευταίο ψηφίο του 4116 και αφαιρούμαι το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του : 411 -(2x6)= 411 - 12=399
- Διαγράφουμε το τελευταίο ψηφίο του 399 και αφαιρούμε το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του : 39 -(2x9)= 39 -18=21
Το 21 είναι πολλαπλάσιο του 7 άρα και ο αρχικός αριθμός 412734 είναι πολλαπλάσιο του 7 .
Κριτήριο διαιρετότητας με το 8
Ένας αριθμός διαιρείται ακριβώς με το 8, όταν οι τρεις τελευταίοι αριθμοί σχηματίζουν αριθμό που διαιρείται με το 8.
π.χ 8/63224 (224:8=28 άρα 8/224 το 8 διαιρεί το 63224)
Κριτήριο διαιρετότητας με το 9
Ένας αριθμός διαιρείται με το 9 αν το άθροισμα των ψηφίων του διαιρείται με το 9. π.χ 9/33471(3+3+4+7+1=18,18:9=2,άρα το 33471 διαιρείται με το 9)
Κριτήριο διαιρετότητας με το 10
Ένας αριθμός διαιρείται με το 10 αν το τελευταίο ψηφίο είναι 0.
π.χ 10/358740
Κριτήριο διαιρετότητας με το 11
Για να βρούμε αν ένας αριθμός διαιρείται με το 11 κάνουμε το εξής.
{1}. Προσθέτουμε τα ψηφία του αριθμού με μονή σειρά ( 1ο + 3ο + 5ο ......ψηφίο ) και βρίσκουμε το άθροισμα τους.
{2}. Ακολούθως προσθέτουμε τα ψηφία με άρτια σειρά ( 2ο +4ο +6ο ....ψηφίο ) και βρίσκουμε το άθροισμα τους.
{3}. Αφαιρούμε το μεγαλύτερο άθροισμα από το μικρότερο.
Αν η διαφορά τους είναι 0 ή πολλαπλάσιο του 11 τότε ο αρχικός αριθμός μας είναι πολλαπλάσιο του 11.
π.χ11/3877357({1} [3+7+3+7=20].{2}[8+7+5=20].{3}[20-20=0])
Αρα το 3877357 διαιρείται από το 11.
Κριτήριο διαιρετότητας με το 25
Ένας αριθμός διαιρείται με το 25 αν ο αριθμός που σχηματίζεται από τα δυο τελευταία του ψηφία διαιρείται με το 25. π.χ 25/17375
(75:25=3, άρα το 17375 διαιρείται με το 25)
Κριτήριο διαιρετότητας με το 100
Ένας αριθμός διαιρείται με το 100 αν τα τελευταία δυο ψηφία είναι 0. π.χ 100/1843500
©Μαρίνος Αυγουστίνου
Α’2 16/12/12
(new)